On Broken Triangles

نویسندگان

  • Martin C. Cooper
  • Achref El Mouelhi
  • Cyril Terrioux
  • Bruno Zanuttini
چکیده

A binary CSP instance satisfying the broken-triangle property (BTP) can be solved in polynomial time. Unfortunately, in practice, few instances satisfy the BTP. We show that a local version of the BTP allows the merging of domain values in arbitrary instances of binary CSP, thus providing a novel polynomial-time reduction operation. Extensive experimental trials on benchmark instances demonstrate a significant decrease in instance size for certain classes of problems.We show that BTP-merging can be generalised to instances with constraints of arbitrary arity and we investigate the theoretical relationship with resolution in SAT. A directional version of the general-arity BTP then allows us to extend the BTP tractable class previously defined only for binary CSP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Broken Triangles and Enhanced Value-Merging

Broken triangles constitute an important concept not only for solving constraint satisfaction problems in polynomial time, but also for variable elimination or domain reduction by merging domain values. Specifically, for a given variable in a binary arc-consistent CSP, if no broken triangle occurs on any pair of values, then this variable can be eliminated while preserving satisfiability. More ...

متن کامل

Broken Triangles Revisited

A broken triangle is a pattern of (in)compatibilities between assignments in a binary CSP (constraint satisfaction problem). In the absence of certain broken triangles, satisfiability-preserving domain reductions are possible via merging of domain values. We investigate the possibility of maximising the number of domain reduction operations by the choice of the order in which they are applied, ...

متن کامل

On Tensor Product of Graphs, Girth and Triangles

The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.

متن کامل

Similar Triangles, Another Trace of the Golden Ratio

In this paper we investigate similar triangles which are not congruent but have two pair congruent sides. We show that greatest lower bound of values for similarity ratio of such triangles is golden ratio. For right triangles, we prove that the supremum of values for similarity ratio is the square root of the golden ratio.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014